The Investigation of the Type of Active Oxygen for the Oxidation of Propylene over Bismuth Molybdate Catalysts Using Infrared and Raman Spectroscopy

INTRODUCTION

Investigations of the selective oxidation of propylene over bismuth molybdate catalysts have shown that there is extensive participation of lattice oxygen in the formation of acrolein and carbon dioxide (1-3). Recently, Keulks and Krenzke (4) have found that the amount of lattice oxygen involved in product formation is much greater for γ -Bi₂MoO₆ than for α -Bi₂Mo₃O₁₂. These data were obtained from a detailed mass spectrometric analysis of the oxygen-18 distribution in acrolein and CO₂ during the steady-state flow reaction of ¹⁸O₂, C₃H₆ and He over the above catalysts.

In this Note, we wish to report spectroscopic data which support the observations by Keulks and Krenzke. We have taken the ir and Raman spectra of α -Bi₂Mo₃O₁₂, β -Bi₂Mo₂O₉, and γ -Bi₂MoO₆ oxidation catalysts after carrying out the following reaction in a recirculation reactor.

 $^{18}O_2 + C_3H_6 \xrightarrow{\text{catalyst}} \text{products.}$

Those catalyst oxide ions (¹⁶O) which are incorporated into the reaction products must be replaced during the catalytic oxidation by ¹⁸O. Thus, by recirculating a predetermined ¹⁸O₂, C_3H_6 , and He gas mixture over the catalyst at 425°C, it should be possible to replace with ¹⁸O a significant portion of the lattice ¹⁶O²⁻⁻ which participate in propylene oxidation. A comparison of ir and Raman spectra of a catalyst sample before and after propylene oxidation in the presence of ¹⁸O should provide information concerning the types and to some extent the quantity of lattice O^{2-} participating in the reaction.

The reaction of propylene and ¹⁸O in the recirculation loop was also conducted using USb₃O₁₀ as the catalyst. Because it has been postulated that the oxidation of propylene over this catalyst proceeds via a surface hydroperoxide mechanism and no lattice O^{2-} are involved (4), then no change in the ir and Raman spectra before and after the reaction should be expected.

EXPERIMENTAL METHODS

The preparation of α -Bi₂Mo₃O₁₂ was taken from Keulks *et al.* (5), γ -Bi₂MoO₆ according to Batist *et al.* (6), and USb₃O₁₀ from Grasselli and Suresh (7). The β -Bi₂Mo₂O₉ was prepared according to Grzybowska *et al.* (8) and was found to be pure and stable at these reaction conditions by using various spectroscopic techniques. The β -phase will be discussed in more detail in a later publication (9).

The amount of each catalyst placed in the recirculation reactor was 0.10 g and the oxygen content of each catalyst was then determined from the stoichiometry of the catalyst. The amount of propylene used in the recirculation loop was determined by calculating the amount of

^{0021-9517/79/050331-07\$02.00/0} Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved

propylene (Linde, C.P. grade) necessary to remove a slight excess of 100% of the oxygen present in the catalyst as reaction products; only CO_2 , H_2O , and C_3H_4O were considered as the oxygen-containing products. The selectivity of the reaction in the recirculation loop was assumed to be the same as for the single-pass flow reaction (85-90% for acrolein formation). This was a valid assumption since contact times were approximately the same for both reaction modes. The pumping speed of the recirculation pump was 105 ml (STP) min⁻¹. The amount of ${}^{18}O_2$ (99) atom[%]¹⁸O from Stohler Isotope Chemicals) in the gas mixture was equal to twice the amount of oxygen present in the catalyst. This was done to ensure oxidizing conditions over the catalyst at all stages of reaction. Helium (99.99%, prepurified from Airco) was used as a diluent, and the composition of gas mixtures before the reaction was 0.1 C₃H₆:0.2 ¹⁸O₂:0.7 He.

The gas mixture was circulated through the loop for 30 min prior to reaction to ensure homogeneous mixing. The reactions were conducted at 425°C at atmospheric pressure; a dry ice/acetone cold trap in the circulation loop removed all condensible products. The reaction was followed by monitoring the decrease of pressure within the loop by using a manometer attached to the loop. The reaction was stopped when there was no further pressure change.

The extent of lattice ¹⁶O incorporation into acrolein and CO_2 during the steadystate oxidation of propylene was determined by flowing ¹⁸O₂, C₃H₆, and He [1:1:8; total flow = 20 ml (STP) min⁻¹] over the catalyst and analyzing the CO₂ and acrolein with a mass spectrometer connected directly to the reactor effluent. The quantity or dilution volume of reactive ¹⁶O in the lattice of the catalyst with which the incoming ¹⁸O₂ equilibrates can be related to the oxygen-18 content of the products and the oxygen flux through the catalyst by assuming the catalyst acts as an exponential dilution volume.

The following modification of the exponential dilution volume equation developed by Ritter and Adams (10) was used to calculate the quantity of reactive bulk oxygen.

$$\frac{\%^{18}\text{O in product}}{\%^{18}\text{O in O}_2} = 1 - e^{-Ft/V}$$

where % ¹⁸O in product/% ¹⁸O in O₂ was determined mass spectrometrically at time, t; F was the total flow of oxygen through the catalyst which equals the flow of oxygen out of the catalyst as oxygenated products, in g-atoms/min, t =time of ¹⁸O₂ addition to flow stream in minutes, and V = reservoir of lattice oxygen, in g-atoms, participating in the formation of a particular product. This equation is more conveniently expressed as:

$$-\ln\left[1 - \frac{\%^{18}\text{O in products}}{\%^{18}\text{O in O}_2}\right] = \frac{F}{V}t.$$

Thus, a plot of the left-hand side of the equation versus t yields a straight line with slope F/V, from which V is calculated. By comparing V with the total quantity of oxygen present in the catalyst, the fraction of reactive oxygen for a given product formation was determined. It should be noted that the absence of m/e = 34 signal in the mass spectrum during the above experiments indicated that the heterophase exchange reaction between ${}^{18}\text{O}_2$ and ${}^{16}\text{O}^{2-}$ was not occurring at these conditions.

After the recirculation reactions were completed, KBr pellets containing the catalysts were made and the ir and Raman spectra of the pellets were taken. The ir spectra were taken with a Beckman ir 12 Spectrophotometer and the Raman spectra were taken with a Spex Ramalog Laser Raman system. Decomposition of the pellet was prevented by spinning the

pellet while being irradiated with the laser beam.

RESULTS

The ir and Raman spectra of the α , β , and γ phase catalysts before and after the oxidation of propylene with ¹⁸O₂ in the gas phase are shown in Figs. 1 and 2. All of the bands in the ir and the Raman spectra of the γ -phase catalyst are shifted with respect to the bands of the γ -phase catalyst before the reaction. The ir and Raman spectra of the β -phase catalyst show similar changes after the reaction with the exception that in the ir spectrum the bands at 925 and 895 cm⁻¹ still appear, and in the Raman spectra changes in lineshapes as well as in the frequencies of the band maxima appear. The band at 830 cm^{-1} is common to both spectra. It is not known whether this is due to a band not shifting or if this is due to the shifting of a different band. The ir spectrum of the α -phase after catalyzing the oxidation of propylene is only slightly different from that of the catalyst before the reaction.

The greatest changes appear as a filling of the gap at 800 cm⁻¹ and a broadening of the bands at 720 and 680 cm⁻¹ into one band. The Raman spectrum of the α -phase catalyst after oxygen-18 oxidation of propylene shows only slight differences. These differences appear as a weak shoulder at 810 cm⁻¹ and the appearance of a broad shoulder to the high frequency side of the band at 383 cm⁻¹. The positions of the band maxima are given in Table 1.

DISCUSSION

The absence of any unshifted bands in the ir and Raman spectra of the γ -phase after oxygen-18 oxidation of propylene suggests that all types of lattice oxygen ions participate in C₃H₆ oxidation and are thus exchanged during the reaction. The ir and Raman spectra of the β -phase catalyst show that most, but not all, types of lattice oxygen ions are exchanged during the oxidation of propylene.

Unfortunately, the assignments of the vibrational bands of the γ - and β -phases are not adequate to determine which

TABLE 1

The Band Positions (em⁻¹) in the ir and Raman Spectra of the α -, β -, and γ -Phase Catalysts before (b) and after (a) the Oxidation of Propylene with ¹⁸O₂

α -ir		α -Raman		β -ir		β -Raman		γ -ir		γ -Raman	
(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)
951	952	965	965	925	925	940	(935) (915)	850	819	865	832
933	939	945	945	896	(895) (880)	898	863	805	770	812	770
906	908	916	914	800	760	830	830	750	720	728	700
865	870	872	872	645	640			565	543	367	355
850	855	850	850		533	376	362	(362) (348)	>352	(310) (295)	>285
836		830	830	480 <	(463) (428)	300	285	(* /		()	
	800		810		. ,						
720	725										
680		665	665								
585	585										
475	475	383	382								
438	437	210	210								

TABLE 2Summary of Oxygen-18 Data

Catalyst	Temperature (°C)	Percentage of total lattice O ²⁻ participating in product formation		
		C_3H_4O	$\rm CO_2$	
α -Bi ₂ Mo ₃ O ₁₂ ^{α}	450	9	9	
	400	4	4	
β -Bi ₂ Mo ₂ O ₉	450	98	98	
	400	56	60	
γ-Bi₂MoO6ª	450	100	100	
	400	45	45	
USb ₃ O ₁₀ ^a	450	0.5	0.5	
	400	0.6	0.6	

^a From Krenzke and Keulks (J. Catal., in press).

lattice oxide ions are exchanged during the reaction. As stated above, the ir and Raman spectra of the α -phase catalysts after the reaction show very little change with respect to the spectra of the catalysts before the reaction. This permits us to suggest that only a few types of lattice oxygen ions in the α -phase are involved in the reaction. The bands at 955, 940, 910, 870, 850, and 840 cm⁻¹ have been assigned to the ν_1 and ν_3 group vibrations of the edge sharing disordered Mo₂O₈⁴⁻ tetrahedra (11). In addition we suggest that the bands at 720 and 680 cm⁻¹ might be due to the dioxo bridge

vibrational modes because of the similarity of the band positions to these found in oxo-molybdenum complexes (12). Because the bands are altered by the reaction involving ¹⁸O, this implies that the bridged oxide ions are involved in the exchange during the reaction. In all three phases studied, the magnitude of the isotopic shifts of the high-frequency bands are similar to those found for Mo-O bands in oxo-molybdenum complexes (12).

The dilution volume experiments were not carried out at 420°C, but at 400 and 450°C. Nevertheless, the results in Table 2 show that the quantity of lattice O²⁻ involved in CO₂ and C₃H₄O formation for γ -phase $\sim \beta$ -phase > α -phase at all reaction temperatures. When considering the slight difference between the spectroscopic and dilution volume results for β -Bi₂Mo₂O₉, it must be remembered that the extinction coefficients of the individual band are not known. Thus, it is not possible from spectroscopic data to quantitatively determine the amount of oxide ions exchanged during propylene oxidation.

To test the hypothesis that propylene oxidation over USb_3O_{10} proceeds via a hydroperoxide mechanism (4), we carried out the oxidation of propylene with ${}^{18}O_2$ over USb_3O_{10} . There were no differences in the ir and Raman spectra before and after reaction, indicating that there was no lattice O^{2-} participation during propylene oxidation. This is in excellent agreement with the dilution volume data for USb_3O_{10} in Table 2.

On a more general basis, these results illustrate the utility and sensitivity of this relatively simple, spectroscopic technique in determining the type of active oxygen involved in oxidation reactions.

REFERENCES

- 1. Keulks, G. W., J. Catal. 19, 232 (1970).
- Wragg, R. D., Ashmore, P. G., and Hockey, J. A., J. Catal. 39, 141 (1971).
- Sancier, K. M., Wentreek, P. R., and Wise, H., J. Catal. 39, 141 (1975).
- 4. Keulks, G. W., and Krenzke, L. D., J. Catal., in press.
- Keulks, G. W., Hall, J. L., Daniel, C., and Suzuki, K., J. Catal. 34, 79 (1974).

- Batist, Ph. A., Bouwens, J. F. H., and Schuit, G. C. A., J. Catal. 25, 1 (1972).
- Grasselli, R. K., and Suresh, D. D., J. Catal. 25, 273 (1972).
- Grzybowska, B., Haber, J., and Komorek, J., J. Catal. 25, 25 (1972).
- 9. Monnier, J. R., and Keulks, G. W., J. Catal., submitted.
- Ritter, J. J., and Adams, N. K., Anal. Chem. 48, 612 (1976).
- Notermann, T., Keulks, G. W., Skliarov, A., Maximou, Yu., Margolis, L. Ya., and Krylov, O. V., J. Catal. 29, 286 (1975).
- 12. Newton, W. E., and McDonald, J. W., in "Chemistry and Uses of Molybdenum, Procedures of the Second International Conference" (P. C. H. Mitchell, Ed.),

pp. 25-30. Climax Molybdenum Co., London, 1976.

EUGENE V. HOEFS John R. Monnier¹ George W. Keulks²

Department of Chemistry Laboratory for Surface Studies University of Wisconsin-Milwaukee Milwaukee, Wisconsin 53201

Received March 16, 1978; revised November 29, 1978

¹Present address: Kodak Research Laboratory, Eastman Kodak Company, 1669 Lake Avenue, Rochester, New York 14651.

² To whom correspondence should be addressed.